
Proceedings of the International Conference on Computer Science, Software Engineering, Information

Technology, e-Business, and Applications (CSITeA’02). Foz do Iguazu, Brazil. June 6 – 8, 2002.

Segmenting Handwritten Arabic Text

Ramzi Haraty and Alaa Hamid

Lebanese American University

P.O. Box 13-5053 Chouran

Beirut, Lebanon 1120 2801

E-mail: rharaty@lau.edu.lb

Abstract

 The segmentation and recognition of Arabic

handwritten text has been an area of great

interest in the past few years. However, a small

number of research papers and reports have

been published in this area. There are several

major problems with Arabic handwritten text

processing: Arabic is written cursively and

many external objects are used such as dots,

‘Hamza’, ‘Madda’, and diacritic objects. In

addition, Arabic characters have more than one

shape according to their position inside a word.

More than one character can also share the

same horizontal space, creating vertically

overlapping connected or disconnected blocks

of characters. This makes the problem of

segmentation of Arabic text into characters,

and their classification even more difficult.

 In this work a technique is presented that

segments difficult handwritten Arabic text. A

conventional algorithm is used for the initial

segmentation of the text into connected blocks

of characters. The algorithm then generates

pre-segmentation points for these blocks. A

neural network is subsequently used to verify

the accuracy of these segmentation points.

Another conventional algorithm uses the

verified segmentation points and segments the

connected blocks of characters. These

characters can then be used as input to another

neural network for classification.

1. Introduction

 In spite of the extensive work done on the

recognition of handwritten Latin and Asian

languages text and the excellent results

obtained in Latin text, a few research papers

and reports have been published in the area of

handwritten Arabic text recognition. This is

because the recognition of handwritten Arabic

text is considerably harder than that of Latin

text due to a number of reasons:

 Arabic is written cursively, i.e., more

than one character can be written

connected to each other, forming a

block of characters (BC).

 Arabic uses many types of external

objects, such as dots, ‘Hamza’,

‘Madda’, and diacritic objects. These

make the task of line separation and

segmenting text into BCs more

difficult.

 Arabic characters can have more than

one shape according to their position

inside a BC: initial, middle, final, or

standalone, as shown in Figure 1.

Figure 1. The shapes the character ح takes

according to its position inside a word.

 Different writers and the same writer

under different conditions will write

some Arabic characters in completely

different ways, as shown in Figure 2.

Figure 2. Three characters written in

completely different ways.

mailto:rharaty@lau.edu.lb

Proceedings of the International Conference on Computer Science, Software Engineering, Information

Technology, e-Business, and Applications (CSITeA’02). Foz do Iguazu, Brazil. June 6 – 8, 2002.

 Characters that do not touch each

other but occupy a shared horizontal

space increase the difficulty of BC

segmentation.

 Arabic uses many ligatures, especially

in handwritten text. Ligatures are

characters that occupy a shared

horizontal space creating vertically

overlapping connected or

disconnected BCs.

 Other problems of handwritten text

recognition include the presence of lines, non-

character objects, and noise or ‘salt-and-

pepper’ in the scanned image. Characters can

also be written in many different sizes, writing

instruments (varying thickness and stroke

quality), and slants (causing character shearing

along the horizontal axis).

 Artificial Neural Networks (ANNs) have

been successfully applied to many areas of

pattern recognition, especially in the field of

character recognition. Some researchers have

used conventional methods for segmentation

and recognition, while others have used ANN

based methods for the character recognition

process [3].

 This research describes a hybrid method to

segment Arabic handwritten text. The method

contains two main components. The first is a

heuristic algorithm, which is responsible for

scanning handwritten text, extracting blocks of

connected characters (BCs), and then

extracting features to be used in the second

component. It is also responsible for

generating pre-segmentation points, which are

validated by the second component, the ANN.

The ANN verifies whether all the segmentation

points found are correct or incorrect

 The remainder of the paper is divided into 4

sections. Section 2 describes the proposed

techniques. Section 3 provides a discussion of

current and future work, and a conclusion is

presented in Section 4.

2. Proposed Techniques

 There are a number of steps that need to be

taken before handwritten text on an envelope

or a page to be recognized by a computer.

These include scanning, binarization,

segmentation, and character recognition.

2.1 Scanning

Since there is no standard benchmark database

for Arabic handwritten text, samples were

acquired randomly from various students and

faculty members around the university. They

were asked to write down their own mailing

address on A4 sized paper. These addresses

were then scanned using an Agfa SnapScan

1212p scanner at 150 pixels per inch and saved

in monochrome Windows Bitmap (BMP)

format. The images had different sizes ranging

from 260 x 140 pixels to 1200 x 400 pixels.

360 addresses have been collected consisting

of about 4000 words or 9000 BCs.

2.2 Binarization

 After the images were acquired, they were

converted into monochrome bitmap form.

Before any segmentation or processing could

take place, it was then necessary to convert the

images into binary representations. A heuristic

algorithm generated a matrix of ones (1’s) and

zeros (0’s) for each image. Each black pixel

was represented with a 1 and each white pixel

with a 0. In this form, segmentation and

preprocessing could take place more easily.

2.3 Segmentation Using a Heuristic

Algorithm

 Segmentation deals with the process of

attempting to isolate classifiable units from the

handwritten text image. It plays an important

role in the overall process of character

recognition. It has been argued that the overall

success rate of any recognition system can be

expressed as a product of 2 factors: the success

rate of the segmentor and the success rate of

the recognizer [1].

2.3.1 Extracting Blocks of Characters

 BC extraction is the first step of the

segmentation phase. It was necessary to

recursively extract connected BCs.

Furthermore, dots, diacritics, and other

external objects are used heavily in Arabic.

This makes the task of linking these external

objects to main character objects, to create

BCs, a very difficult process. A heuristic

algorithm was implemented with 94%

accuracy, scanned the whole binary matrix of

the image and performed the following steps:

Step 1. Before any processing could occur,

invalid isolated black pixels, or ‘pepper’ were

removed. A black pixel was identified as

pepper and discarded if it had a maximum of

one black neighbor pixel.

Proceedings of the International Conference on Computer Science, Software Engineering, Information

Technology, e-Business, and Applications (CSITeA’02). Foz do Iguazu, Brazil. June 6 – 8, 2002.

Step 2. Recursively, identify each group of

connected black pixels as an object.

Step 3. Classify objects as child or parent

ones. If the weight, or black pixel density, of

the object is less than half of average weight of

all objects, then it is marked as a child.

Otherwise, it is marked as a parent.

Step 4. For each child object, determine the

distance to all parents.

Step 5. For each child object, determine the

distance range, R, for all possible parents,

which is equal to 150% of the distance to the

nearest parent. This formula was found by

experimentation and yielded the best results.

Step 6. Merge all children to all parents who

are at a maximum distance of R. This will lead

to child objects being duplicated and merged to

more than one parent. This is done to solve the

problem of children that are located near

objects other than their parent ones.

 Higher accuracy couldn’t be achieved

because of external or child objects that were

too far away from their parent objects and too

near to other main objects.

2.3.2 Feature Extraction and Possible

Segmentation Point Generation

 The heuristic BC segmentation algorithm

contained two components. The first one

scanned the BC looking for important features

to identify possible segmentation points. Such

features include minimas or ligatures between

letters, common in handwritten cursive text. In

many cases these ligatures are the ideal

segmentation points. In other cases, more

features are needed to determine a valid

segmentation point like holes, endpoints,

corners, and fork points. A complete list of

extracted features is shown in Table 1.

Skeletonization of the image was required in

order to extract most of these features.

Skeletonization or thinning is an image-

processing step that reduces BCs to their

skeletons, i.e., transforming characters into arc

segments one pixel thick. The thinning

algorithm of [5] produced acceptable results

with few enhancements and modifications.

 The objective of the second component was

to over-segment all the BCs based on the

features extracted in the first component. The

distribution of the proposed segmentation

points is also taken into consideration based on

the average character width in a BC. The

average character width is determined from the

average word height. It is understood that the

width of a character in most cases is less than

its height. Therefore as an approximate

character width estimate, a percentage of the

average word height is used to provide a rough

solution.

Proceedings of the International Conference on Computer Science, Software Engineering, Information

Technology, e-Business, and Applications (CSITeA’02). Foz do Iguazu, Brazil. June 6 – 8, 2002.

Table 1. Major features extracted for each column of BC matrix.

Feature Attributes Description Attr.

Type

Attr.

Value

Image width and height Image width and height in pixels. Discrete (0,∞)

Black pixel

density

Black pixel density /

height

Number of black pixels in the column

divided by the image height.

Cont. [0,1]

Density minima Does the column cross a density minimum? Binary 0 or 1

Density maxima Does the column cross a density maximum? Binary 0 or 1

Transitions Number of transitions

crossed

Scan the image vertically and count the

number of foreground-background and

background-foreground transitions crossed

by column.

Discrete [0,ht.]

Holes Number of holes

crossed

Count the number of holes (or islands of

white pixels completely surrounded by black

pixels) crossed by column.

Discrete [0,ht.]

Total hole densities /

height

Total number of hole pixels crossed by

column divided by the image height.

Cont. [0,1]

Endpoints Number of endpoints

crossed

Number of endpoints crossed by column. Discrete [0,ht.]

Corner points Number of corners

crossed

Number of corner points crossed by column. Discrete [0,ht.]

Fork points Number of fork points

crossed

Number of fork points crossed by column. Discrete [0,ht.]

Relative index of column in image Index of column divided by image width. Cont. [0,1]

Upper and lower

contours

Upper and lower

contour index / height

Index of upper most and lower most black

pixel crossed by column divided by image

height.

Cont. [0,1]

Upper and lower

contour minima or

maxima

Does the column cross an upper or lower

contour minima or maxima?

Binary 0 or 1

Feature

relationships

Index of nearest left

and right feature / 100

Index of nearest left and right feature in a

100-pixel width range.

Cont. [0,1]

2.4 Segmentation Using an Artificial

Neural Network

 To train the ANN with both accurate and

erroneous segmentation points, the output from

the heuristic segmentation algorithm was used.

It was necessary to manually separate the

points generated by the algorithm into valid

and invalid segmentation points and save them

to a file together with the extracted set of

features and desired output for each point.

2.4.1 ANN Architecture

 A generalized feedforward neural network

was used to validate the accuracy of the

proposed segmentation points. This neural

network is a generalization of the multi-layer

perceptron (MLP) such that each layer feeds

forward to all subsequent layers. In theory, a

MLP can solve any problem that a generalized

feedforward network can solve. In practice,

however, generalized feedforward networks

often solve the problem much more efficiently

[2], [4].

 The first criterion is to use an efficient

technique for training. Training of the network

was done using the error back-propagation

technique. This technique gets its name from

the fact that the network is presented with an

input pattern, for which an output pattern is

calculated. Then the error between the desired

and actual output can be determined, and

passed backwards through the network. Based

on these errors, weight adaptations are

calculated, and errors are passed to a previous

layer, continuing until the first layer is reached.

The error is thus propagated back through the

network. A training set of 48,000 exemplars

was used.

 The second criterion is the network size.

The number of PEs in a hidden layer is

associated with the mapping ability of the

network. The larger the number, the more

powerful the network is. However, if one

Proceedings of the International Conference on Computer Science, Software Engineering, Information

Technology, e-Business, and Applications (CSITeA’02). Foz do Iguazu, Brazil. June 6 – 8, 2002.

continues to increase the network size, there is

a point where the generalization gets worse.

This is due to the fact that we may be over-

fitting the training set, so when the network

works with patterns that it has never seen

before the response is unpredictable.

 There is no rule of thumb to determine good

network architecture just from the number of

inputs and outputs. It depends critically on the

number of training cases, the amount of noise,

and the complexity of the function or

classification the network is supposed to learn.

There are cases with one input and one output

that require thousands of hidden units, and

cases with a thousand inputs and a thousand

outputs that require only one hidden unit, or

none at all. To solve this issue many different

networks with different number of hidden units

were tried at first, starting with the smallest

possible number of PEs. The generalization

error for each one was estimated, and the

network with the minimum estimated

generalization error that learned best to

identify correct segmentation points was

chosen.

 The best ANN architecture reached

consisted of 52 inputs, 1 output, and 4 hidden

layers. The 52 inputs were feature attributes of

a pre-segmentation point and the output was

the validity of the point. The third criterion is

the termination of the training process. Cross

validation was used, which is a highly

recommended method for stopping network

training. It monitors the mean square error on

an independent set of data and stops training

when this error begins to increase. This is

considered to be the point of best

generalization. The cross-validation set

consisted of 10,000 exemplars. The best ANN

architecture reached consisted of 52 inputs

(extracted features), 1 output, and 4 hidden

layers.

2.4.2 Experimental Results

 The output range of the ANN was between

–0.9 and +0.9. A positive value indicated that

a point is a valid segmentation point; a

negative value indicated that a point should be

ignored.

 A heuristic algorithm checked the results of

the segmentation ANN on a test set of 10,000

exemplars. The algorithm defined the

segmentation of a BC as correct when each

known segmentation point was covered by an

approved segmentation point by the ANN.

Adequate coverage of a segmentation point is

achieved when the distance from the known

segmentation point to the closest approved

point is less than 15% of the average character

size.

 There were some objects that were

impossible to segment in handwritten Arabic

text. Every 100 BCs of the collected data

contain 10.16 un-segmentable ligatures and

13.02 characters with miss-located external

objects. In addition, 9.24 س and ش characters

occur in every 100 BCs, which are almost

always un-segmentable. Other miscellaneous

un-segmentable BCs include characters like

the letter ض, which is always segmented into

the letters ع or م, and ن.

 Table 2 shows the results of the

segmentation ANNs trained on the 48,000

training exemplars and tested on 10,000

exemplars. Many experiments were performed

varying settings such as the network type, the

number of hidden layers and the number of

processing elements in each layer. For each

experiment the number of inputs remained the

same: 52 input features for each column.

Proceedings of the International Conference on Computer Science, Software Engineering, Information

Technology, e-Business, and Applications (CSITeA’02). Foz do Iguazu, Brazil. June 6 – 8, 2002.

Figure 5. Distribution of ANN responses

Table 2. Segmentation ANN results using 48,000 training exemplars, tested on 10,000 exemplars.

ANN Architecture

M
S

E

Correct Points Incorrect Points

Invalid

points

Valid

points

Invalid

points

marked as

valid

Valid

points

marked

as invalid
Network Type

Hidden Layers

N

o
PEs

Feedforward MLP 2 41-27 0.81 1354 (13.54%) 8646 (86.46%)

Feedforward MLP 3 41-27-20 0.72 2684 (26.84% 7316 (73.16%)

Feedforward MLP 4 41-27-20-16 0.41

5311 (53.11%) 4689 (46.89%)

3767

(37.67%)

1544

(15.44%)

3326

(33.26%)

1363

(13.63%)

Feedforward MLP 5 41-27-20-16-13 0.56 4225 (42.25%) 5775 (57.75%)

Feedforward MLP 6 41-27-20-16-13-11 0.50 4633 (46.33%) 5367 (53.67%)

MLP 5 55-31-19-15-11 0.82 1332 (13.32%) 8668 (86.68%)

MLP 7 55-31-19-15-13-11-9 0.59 3854 (38.54%) 6146 (61.46%)

MLP 9
55-31-19-15-13-11-9-

7-6
0.73 2336 (23.36%) 7664 (76.64%)

 The ANN architecture performed best in

identifying correct segmentation points and

discarding incorrect ones. The minimum MSE

achieved was 0.41. The ANN was able to

identify the accuracy of 5,311 points out of the

10,000-point testing set. Of the correctly

identified points, 3, 767 were invalid

segmentation points and 1,544 were valid

segmentation points.

 The ANN incorrectly identified 4,689

points. 3,326 of these points were invalid

segmentation points marked as valid, and

1,363 were valid points marked as invalid. It

should be noted that the majority of incorrectly

identified points were invalid segmentation

points marked as valid, which implies that the

ANN over-segmented the handwritten BCs.

 After studying the distribution of the ANN

results over the range [-0.9,+0.9], it was noted

that the majority of these 3,326 points were

found in the [0,+0.5] range, as illustrated in

Figure 3.

Figure 3. Distribution of ANN responses.

Proceedings of the International Conference on Computer Science, Software Engineering, Information

Technology, e-Business, and Applications (CSITeA’02). Foz do Iguazu, Brazil. June 6 – 8, 2002.

 To decrease the number of incorrectly

identified segmentation points, a threshold

value was applied to the ANN output. A

module was implemented which checked the

ANN responses against a 0.5 threshold.

Responses between 0 and +0.5 were therefore

rejected. It should be noted that these rejected

patterns also include 810 correctly identified

valid segmentation points. However, the

number of incorrectly identified points, 2,733,

in the (0,0.5) range is much greater than the

correctly identified points. Table 3 shows the

results after rejecting these patterns.

Table 3. ANN results after rejecting patterns with responses in the (0,0.5) range.

Correct Points Incorrect Points Rejected Points

Invalid

points
Valid points

Invalid

points

marked as

valid

Valid points

marked as

invalid

Invalid

points

marked as

valid

Valid points

4501 (45.01%) 1956 (19.56%) 3543 (35.43%)

3767

(37.67%)

734

(7.34%)

593

(5.93%)

1363

(13.63%)

2733

(27.33%)

810

(8.10%)

3. Conclusion and Future Work

 A heuristic segmentation technique used in

conjunction with a generalized feed-forward

multi-layer neural network has been presented

in this paper. It was used to segment difficult

handwritten Arabic text, producing promising

results.

 The segmentation program over-segmented

the BCs it was presented with. This allowed

the segmentation ANN to discard improper

segmentation points and leave accurate ones.

Overall the whole process was very successful,

however some limitations still exist. The

segmentation phase proved to be successful in

vertical segmentation of connected blocks of

characters. However, in Arabic handwritten

text, a lot of characters share the same

horizontal space. A major limitation of the

presented technique is that it couldn’t segment

horizontally these overlapping characters.

 Another problem is that there are a lot of

handwritten characters that can be segmented

and classified into two or more different

classes depending on whether you look at them

separately, or in a word, or even in a sentence.

In other words, character segmentation and

classification, especially handwritten Arabic

characters, depends largely on contextual

information, and not only on the topographic

features extracted from these characters.

Arabic handwriting recognition is a difficult

problem and it is not yet realistic to expect

systems to achieve an acceptable accuracy in

large vocabularies or where contextual

information is of little use.

 In future work, the segmentation technique

will be improved in a number of ways. Firstly,

the heuristic component of the segmentation

system will need to be enhanced further.

Originally, one of the main aims of the

heuristic algorithm was to keep the number of

incorrect segmentation points to a minimum,

so that errors and processing time could be

reduced. As a result, under-segmentation was

noticeable in some BCs. Looking for more

features or possibly enhancing the current

feature extraction methods can solve this

problem.

References

[1] B. Al-Badr and R. Haralick, “A Segmentation-

Free Approach to Text Recognition with

Application to Arabic Text”, International Journal

on Document Analysis and Recognition, vol. 1, no.

3, pp. 147-166, Dec. 1998.

[2] L. Almeida, “Multilayer Perceptrons, Handbook

of Neural Computation”, IOP Publishing Ltd. and

Oxford University Press, 1997.

[3] M. Blumenstein and B.Verma, “Recent

Achievements in Off-Line Handwriting Recognition

Systems”, in Proc. International Conference on

Computational Intelligence and Multimedia

Applications (ICCIMA '98), Melbourne, Australia,

1998, pp. 27-33.

[4] M. Blumenstein and B. Verma, “Neural Based

Solution for the Segmentation and Recognition of

Difficult Handwritten Words”, in Proc. Fifth

International Conference on Document Analysis

and Recognition, 1998.
[5] A. Rosenfeld, “A Simple Parallel Algorithm for

Skeletonization”,

http://www.cs.mcgill.ca/~laleh/rosen_alg.html.

2002.

http://www.cs.mcgill.ca/~laleh/rosen_alg.html

