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Abstract 
 

     The segmentation and recognition of Arabic 

handwritten text has been an area of great 

interest in the past few years. However, a small 

number of research papers and reports have 

been published in this area. There are several 

major problems with Arabic handwritten text 

processing:  Arabic is written cursively and 

many external objects are used such as dots, 

‘Hamza’, ‘Madda’, and diacritic objects.  In 

addition, Arabic characters have more than one 

shape according to their position inside a word.  

More than one character can also share the 

same horizontal space, creating vertically 

overlapping connected or disconnected blocks 

of characters.  This makes the problem of 

segmentation of Arabic text into characters, 

and their classification even more difficult. 

 

     In this work a technique is presented that 

segments difficult handwritten Arabic text.  A 

conventional algorithm is used for the initial 

segmentation of the text into connected blocks 

of characters.  The algorithm then generates 

pre-segmentation points for these blocks.  A 

neural network is subsequently used to verify 

the accuracy of these segmentation points.  

Another conventional algorithm uses the 

verified segmentation points and segments the 

connected blocks of characters.  These 

characters can then be used as input to another 

neural network for classification. 

 

  

1. Introduction 
 

     In spite of the extensive work done on the 

recognition of handwritten Latin and Asian 

languages text and the excellent results 

obtained in Latin text, a few research papers 

and reports have been published in the area of 

handwritten Arabic text recognition.  This is 

because the recognition of handwritten Arabic 

text is considerably harder than that of Latin 

text due to a number of reasons: 

 

 Arabic is written cursively, i.e., more 

than one character can be written 

connected to each other, forming a 

block of characters (BC). 

 Arabic uses many types of external 

objects, such as dots, ‘Hamza’, 

‘Madda’, and diacritic objects.  These 

make the task of line separation and 

segmenting text into BCs more 

difficult. 

 Arabic characters can have more than 

one shape according to their position 

inside a BC: initial, middle, final, or 

standalone, as shown in Figure 1. 

 

 

Figure 1.  The shapes the character ح takes 

according to its position inside a word. 

 

 Different writers and the same writer 

under different conditions will write 

some Arabic characters in completely 

different ways, as shown in Figure 2.   

 

  

Figure 2. Three characters written in 

completely different ways. 
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 Characters that do not touch each 

other but occupy a shared horizontal 

space increase the difficulty of BC 

segmentation. 

 Arabic uses many ligatures, especially 

in handwritten text.  Ligatures are 

characters that occupy a shared 

horizontal space creating vertically 

overlapping connected or 

disconnected BCs. 

 

     Other problems of handwritten text 

recognition include the presence of lines, non-

character objects, and noise or ‘salt-and-

pepper’ in the scanned image.  Characters can 

also be written in many different sizes, writing 

instruments (varying thickness and stroke 

quality), and slants (causing character shearing 

along the horizontal axis). 

  

     Artificial Neural Networks (ANNs) have 

been successfully applied to many areas of 

pattern recognition, especially in the field of 

character recognition. Some researchers have 

used conventional methods for segmentation 

and recognition, while others have used ANN 

based methods for the character recognition 

process [3]. 

 

     This research describes a hybrid method to 

segment Arabic handwritten text.  The method 

contains two main components.  The first is a 

heuristic algorithm, which is responsible for 

scanning handwritten text, extracting blocks of 

connected characters (BCs), and then 

extracting features to be used in the second 

component.  It is also responsible for 

generating pre-segmentation points, which are 

validated by the second component, the ANN.  

The ANN verifies whether all the segmentation 

points found are correct or incorrect 

 

     The remainder of the paper is divided into 4 

sections.  Section 2 describes the proposed 

techniques. Section 3 provides a discussion of 

current and future work, and a conclusion is 

presented in Section 4. 

 

2. Proposed Techniques 
 

     There are a number of steps that need to be 

taken before handwritten text on an envelope 

or a page to be recognized by a computer.  

These include scanning, binarization, 

segmentation, and character recognition. 

2.1 Scanning 

 

Since there is no standard benchmark database 

for Arabic handwritten text, samples were 

acquired randomly from various students and 

faculty members around the university.  They 

were asked to write down their own mailing 

address on A4 sized paper.  These addresses 

were then scanned using an Agfa SnapScan 

1212p scanner at 150 pixels per inch and saved 

in monochrome Windows Bitmap (BMP) 

format.  The images had different sizes ranging 

from 260 x 140 pixels to 1200 x 400 pixels.  

360 addresses have been collected consisting 

of about 4000 words or 9000 BCs.   

2.2 Binarization 

 

     After the images were acquired, they were 

converted into monochrome bitmap form.  

Before any segmentation or processing could 

take place, it was then necessary to convert the 

images into binary representations.  A heuristic 

algorithm generated a matrix of ones (1’s) and 

zeros (0’s) for each image.  Each black pixel 

was represented with a 1 and each white pixel 

with a 0.  In this form, segmentation and 

preprocessing could take place more easily. 

2.3 Segmentation Using a Heuristic 

Algorithm 

 

     Segmentation deals with the process of 

attempting to isolate classifiable units from the 

handwritten text image.  It plays an important 

role in the overall process of character 

recognition.  It has been argued that the overall 

success rate of any recognition system can be 

expressed as a product of 2 factors: the success 

rate of the segmentor and the success rate of 

the recognizer [1].    

 

2.3.1 Extracting Blocks of Characters 

 

     BC extraction is the first step of the 

segmentation phase.   It was necessary to 

recursively extract connected BCs.  

Furthermore, dots, diacritics, and other 

external objects are used heavily in Arabic.  

This makes the task of linking these external 

objects to main character objects, to create 

BCs, a very difficult process.  A heuristic 

algorithm was implemented with 94% 

accuracy, scanned the whole binary matrix of 

the image and performed the following steps: 

Step 1.   Before any processing could occur, 

invalid isolated black pixels, or ‘pepper’ were 

removed.  A black pixel was identified as 

pepper and discarded if it had a maximum of 

one black neighbor pixel. 
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Step 2.   Recursively, identify each group of 

connected black pixels as an object. 

Step 3.  Classify objects as child or parent 

ones.  If the weight, or black pixel density, of 

the object is less than half of average weight of 

all objects, then it is marked as a child.  

Otherwise, it is marked as a parent. 

Step 4.   For each child object, determine the 

distance to all parents. 

Step 5.   For each child object, determine the 

distance range, R, for all possible parents, 

which is equal to 150% of the distance to the 

nearest parent.  This formula was found by 

experimentation and yielded the best results. 

Step 6.   Merge all children to all parents who 

are at a maximum distance of R.  This will lead 

to child objects being duplicated and merged to 

more than one parent.  This is done to solve the 

problem of children that are located near 

objects other than their parent ones. 

 

     Higher accuracy couldn’t be achieved 

because of external or child objects that were 

too far away from their parent objects and too 

near to other main objects. 

 

2.3.2 Feature Extraction and Possible 

Segmentation Point Generation 

 

     The heuristic BC segmentation algorithm 

contained two components.  The first one 

scanned the BC looking for important features 

to identify possible segmentation points.  Such 

features include minimas or ligatures between 

letters, common in handwritten cursive text.  In 

many cases these ligatures are the ideal 

segmentation points.  In other cases, more 

features are needed to determine a valid 

segmentation point like holes, endpoints, 

corners, and fork points.  A complete list of 

extracted features is shown in Table 1.  

Skeletonization of the image was required in 

order to extract most of these features. 

Skeletonization or thinning is an image-

processing step that reduces BCs to their 

skeletons, i.e., transforming characters into arc 

segments one pixel thick. The thinning 

algorithm of [5] produced acceptable results 

with few enhancements and modifications. 

 

     The objective of the second component was 

to over-segment all the BCs based on the 

features extracted in the first component.  The 

distribution of the proposed segmentation 

points is also taken into consideration based on 

the average character width in a BC.  The 

average character width is determined from the 

average word height.  It is understood that the 

width of a character in most cases is less than 

its height.  Therefore as an approximate 

character width estimate, a percentage of the 

average word height is used to provide a rough 

solution.
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Table 1. Major features extracted for each column of BC matrix. 

Feature Attributes Description Attr. 

Type 

Attr. 

Value 

Image width and height Image width and height in pixels. Discrete (0,∞) 

Black pixel 

density 

Black pixel density / 

height 

Number of black pixels in the column 

divided by the image height. 

Cont. [0,1] 

Density minima Does the column cross a density minimum? Binary 0 or 1 

Density maxima Does the column cross a density maximum? Binary 0 or 1 

Transitions Number of transitions 

crossed 

Scan the image vertically and count the 

number of foreground-background and 

background-foreground transitions crossed 

by column. 

Discrete [0,ht.] 

Holes Number of holes 

crossed 

Count the number of holes (or islands of 

white pixels completely surrounded by black 

pixels) crossed by column. 

Discrete [0,ht.] 

Total hole densities / 

height 

Total number of hole pixels crossed by 

column divided by the image height. 

Cont. [0,1] 

Endpoints Number of endpoints 

crossed 

Number of endpoints crossed by column. Discrete [0,ht.] 

Corner points Number of corners 

crossed 

Number of corner points crossed by column. Discrete [0,ht.] 

Fork points Number of fork points 

crossed 

Number of fork points crossed by column. Discrete [0,ht.] 

Relative index of column in image Index of column divided by image width. Cont. [0,1] 

Upper and lower 

contours 

Upper and lower 

contour index / height 

Index of upper most and lower most black 

pixel crossed by column divided by image 

height. 

Cont. [0,1] 

Upper and lower 

contour minima or 

maxima 

Does the column cross an upper or lower 

contour minima or maxima? 

Binary 0 or 1 

Feature 

relationships 

Index of nearest left 

and right feature / 100 

Index of nearest left and right feature in a 

100-pixel width range. 

Cont. [0,1] 

2.4 Segmentation Using an Artificial 

Neural Network 

 

     To train the ANN with both accurate and 

erroneous segmentation points, the output from 

the heuristic segmentation algorithm was used.  

It was necessary to manually separate the 

points generated by the algorithm into valid 

and invalid segmentation points and save them 

to a file together with the extracted set of 

features and desired output for each point.   

 

2.4.1 ANN Architecture 

 

     A generalized feedforward neural network 

was used to validate the accuracy of the 

proposed segmentation points.  This neural 

network is a generalization of the multi-layer 

perceptron (MLP) such that each layer feeds 

forward to all subsequent layers. In theory, a 

MLP can solve any problem that a generalized 

feedforward network can solve. In practice, 

however, generalized feedforward networks 

often solve the problem much more efficiently 

[2], [4]. 

 

     The first criterion is to use an efficient 

technique for training.  Training of the network 

was done using the error back-propagation 

technique.  This technique gets its name from 

the fact that the network is presented with an 

input pattern, for which an output pattern is 

calculated.  Then the error between the desired 

and actual output can be determined, and 

passed backwards through the network.  Based 

on these errors, weight adaptations are 

calculated, and errors are passed to a previous 

layer, continuing until the first layer is reached.  

The error is thus propagated back through the 

network.  A training set of 48,000 exemplars 

was used. 

 

     The second criterion is the network size.  

The number of PEs in a hidden layer is 

associated with the mapping ability of the 

network. The larger the number, the more 

powerful the network is. However, if one 
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continues to increase the network size, there is 

a point where the generalization gets worse. 

This is due to the fact that we may be over-

fitting the training set, so when the network 

works with patterns that it has never seen 

before the response is unpredictable.  

 

     There is no rule of thumb to determine good 

network architecture just from the number of 

inputs and outputs. It depends critically on the 

number of training cases, the amount of noise, 

and the complexity of the function or 

classification the network is supposed to learn.  

There are cases with one input and one output 

that require thousands of hidden units, and 

cases with a thousand inputs and a thousand 

outputs that require only one hidden unit, or 

none at all.  To solve this issue many different 

networks with different number of hidden units 

were tried at first, starting with the smallest 

possible number of PEs.  The generalization 

error for each one was estimated, and the 

network with the minimum estimated 

generalization error that learned best to 

identify correct segmentation points was 

chosen. 

 

     The best ANN architecture reached 

consisted of 52 inputs, 1 output, and 4 hidden 

layers.  The 52 inputs were feature attributes of 

a pre-segmentation point and the output was 

the validity of the point. The third criterion is 

the termination of the training process.  Cross 

validation was used, which is a highly 

recommended method for stopping network 

training. It monitors the mean square error on 

an independent set of data and stops training 

when this error begins to increase. This is 

considered to be the point of best 

generalization.  The cross-validation set 

consisted of 10,000 exemplars. The best ANN 

architecture reached consisted of 52 inputs 

(extracted features), 1 output, and 4 hidden 

layers. 

 

2.4.2 Experimental Results 

 

     The output range of the ANN was between 

–0.9 and +0.9.  A positive value indicated that 

a point is a valid segmentation point; a 

negative value indicated that a point should be 

ignored.   

 

     A heuristic algorithm checked the results of 

the segmentation ANN on a test set of 10,000 

exemplars.  The algorithm defined the 

segmentation of a BC as correct when each 

known segmentation point was covered by an 

approved segmentation point by the ANN.  

Adequate coverage of a segmentation point is 

achieved when the distance from the known 

segmentation point to the closest approved 

point is less than 15% of the average character 

size. 

 

     There were some objects that were 

impossible to segment in handwritten Arabic 

text.  Every 100 BCs of the collected data 

contain 10.16 un-segmentable ligatures and 

13.02 characters with miss-located external 

objects.   In addition, 9.24 س and ش characters 

occur in every 100 BCs, which are almost 

always un-segmentable.  Other miscellaneous 

un-segmentable BCs include characters like 

the letter ض, which is always segmented into 

the letters ع or م, and ن. 

 

     Table 2 shows the results of the 

segmentation ANNs trained on the 48,000 

training exemplars and tested on 10,000 

exemplars.  Many experiments were performed 

varying settings such as the network type, the 

number of hidden layers and the number of 

processing elements in each layer.  For each 

experiment the number of inputs remained the 

same: 52 input features for each column.   
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Figure 5. Distribution of ANN responses 

Table 2.  Segmentation ANN results using 48,000 training exemplars, tested on 10,000 exemplars. 

ANN Architecture 

M
S

E
 

Correct Points Incorrect Points 

Invalid 

points 

Valid 

points 

Invalid 

points 

marked as 

valid 

Valid 

points 

marked 

as invalid 
Network Type 

Hidden Layers 

N

o 
PEs 

Feedforward MLP 2 41-27 0.81 1354 (13.54%) 8646 (86.46%) 

Feedforward MLP 3 41-27-20 0.72 2684 (26.84% 7316 (73.16%) 

Feedforward MLP 4 41-27-20-16 0.41 

5311 (53.11%) 4689 (46.89%) 

3767  

(37.67%) 

1544 

(15.44%) 

3326 

(33.26%) 

1363 

(13.63%) 

Feedforward MLP 5 41-27-20-16-13 0.56 4225 (42.25%) 5775 (57.75%) 

Feedforward MLP 6 41-27-20-16-13-11 0.50 4633 (46.33%) 5367 (53.67%) 

MLP 5 55-31-19-15-11 0.82 1332 (13.32%) 8668 (86.68%) 

MLP 7 55-31-19-15-13-11-9 0.59 3854 (38.54%) 6146 (61.46%) 

MLP 9 
55-31-19-15-13-11-9-

7-6 
0.73 2336 (23.36%) 7664 (76.64%) 

 

     The ANN architecture performed best in 

identifying correct segmentation points and 

discarding incorrect ones.  The minimum MSE 

achieved was 0.41.  The ANN was able to 

identify the accuracy of 5,311 points out of the 

10,000-point testing set.  Of the correctly 

identified points, 3, 767 were invalid 

segmentation points and 1,544 were valid 

segmentation points. 

 

     The ANN incorrectly identified 4,689 

points.  3,326 of these points were invalid 

segmentation points marked as valid, and 

1,363 were valid points marked as invalid.  It 

should be noted that the majority of incorrectly 

identified points were invalid segmentation 

points marked as valid, which implies that the 

ANN over-segmented the handwritten BCs. 

 

     After studying the distribution of the ANN 

results over the range [-0.9,+0.9], it was noted 

that the majority of these 3,326 points were 

found in the [0,+0.5] range, as illustrated in 

Figure 3. 

 

Figure 3. Distribution of ANN responses. 
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     To decrease the number of incorrectly 

identified segmentation points, a threshold 

value was applied to the ANN output.  A 

module was implemented which checked the 

ANN responses against a 0.5 threshold.   

Responses between 0 and +0.5 were therefore 

rejected.  It should be noted that these rejected 

patterns also include 810 correctly identified 

valid segmentation points.  However, the 

number of incorrectly identified points, 2,733, 

in the (0,0.5) range is much greater than the 

correctly identified points.   Table 3 shows the 

results after rejecting these patterns. 

Table 3. ANN results after rejecting patterns with responses in the (0,0.5) range. 

Correct Points Incorrect Points Rejected Points 

Invalid 

points 
Valid points 

Invalid 

points 

marked as 

valid 

Valid points 

marked as 

invalid 

Invalid 

points 

marked as 

valid 

Valid points 

4501 (45.01%) 1956 (19.56%) 3543 (35.43%) 

3767 

(37.67%) 

734 

(7.34%) 

593 

(5.93%) 

1363 

(13.63%) 

2733 

(27.33%) 

810 

(8.10%) 

 

3. Conclusion and Future Work 
 

     A heuristic segmentation technique used in 

conjunction with a generalized feed-forward 

multi-layer neural network has been presented 

in this paper.  It was used to segment difficult 

handwritten Arabic text, producing promising 

results.   

 

     The segmentation program over-segmented 

the BCs it was presented with.  This allowed 

the segmentation ANN to discard improper 

segmentation points and leave accurate ones.  

Overall the whole process was very successful, 

however some limitations still exist. The 

segmentation phase proved to be successful in 

vertical segmentation of connected blocks of 

characters.  However, in Arabic handwritten 

text, a lot of characters share the same 

horizontal space.  A major limitation of the 

presented technique is that it couldn’t segment 

horizontally these overlapping characters.   

 

     Another problem is that there are a lot of 

handwritten characters that can be segmented 

and classified into two or more different 

classes depending on whether you look at them 

separately, or in a word, or even in a sentence.  

In other words, character segmentation and 

classification, especially handwritten Arabic 

characters, depends largely on contextual 

information, and not only on the topographic 

features extracted from these characters.  

Arabic handwriting recognition is a difficult 

problem and it is not yet realistic to expect 

systems to achieve an acceptable accuracy in 

large vocabularies or where contextual 

information is of little use. 

 

     In future work, the segmentation technique 

will be improved in a number of ways.  Firstly, 

the heuristic component of the segmentation 

system will need to be enhanced further.  

Originally, one of the main aims of the 

heuristic algorithm was to keep the number of 

incorrect segmentation points to a minimum, 

so that errors and processing time could be 

reduced.  As a result, under-segmentation was 

noticeable in some BCs.  Looking for more 

features or possibly enhancing the current 

feature extraction methods can solve this 

problem. 
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